Learning Concept Mappings from Instance Similarity
نویسندگان
چکیده
Finding mappings between compatible ontologies is an important but difficult open problem. Instance-based methods for solving this problem have the advantage of focusing on the most active parts of the ontologies and reflect concept semantics as they are actually being used. However such methods have not at present been widely investigated in ontology mapping, compared to linguistic and structural techniques. Furthermore, previous instance-based mapping techniques were only applicable to cases where a substantial set of instances was available that was doubly annotated with both vocabularies. In this paper we approach the mapping problem as a classification problem based on the similarity between instances of concepts. This has the advantage that no doubly annotated instances are required, so that the method can be applied to any two corpora annotated with their own vocabularies. We evaluate the resulting classifiers on two real-world use cases, one with homogeneous and one with heterogeneous instances. The results illustrate the efficiency and generality of this method.
منابع مشابه
Transition Potential Modeling of Land-Cover based on Similarity Weighted Instance-based Learning Procedure and Its Implication in the REDD Project Design Document
Reducing Emissions from Deforestation and Forest Degradation (REDD) is a climate change mitigation strategy employed to reduce the intensity of deforestation and GHGS emissions. In recent decades, drastic land use changes in Mazandaran province caused a substantial reduction in the amount of Hyrcanian forests. The present research based on objectives of REDD projects paid to identify of fore...
متن کاملPartial Ontology Matching Using Instance Features
Ontologies are a useful model to express semantics in a machinereadable way. A matching of heterogeneous ontologies is often required for many different applications like query answering or ontology integration. Many systems coping with the matching problem have been developed in the past, most of them using meta information like concept names as a basis for their calculations. This approach wo...
متن کاملIGLUE: An Instance-Based Learning System over Lattice Theory
Concept learning is one of the most studied areas in machine learning. A lot of work in this domain deals with decision trees. In this paper, we are concerned with a diierent kind of technique based on Galois lattices or concept lattices. We present a new semi-lattice based system, IGLUE, that uses the entropy function with a top-down approach to select concepts during the lattice construction....
متن کاملAligning Pharmacologic Classes Between MeSH and ATC
Objective: To align pharmacologic classes in ATC and MeSH with lexical and instance-based techniques. Methods: Lexical alignment: we map the names of ATC classes to MeSH through the UMLS, leveraging normalization and additional synonymy. Instance-based alignment: we associate ATC and MeSH classes through the drugs they share, using the Jaccard coefficient to measure class-class similarity. We u...
متن کاملMultiple-instance learning with pairwise instance similarity
Multiple-Instance Learning (MIL) has attracted much attention of the machine learning community in recent years and many real-world applications have been successfully formulated as MIL problems. Over the past few years, several Instance Selection-based MIL (ISMIL) algorithms have been presented by using the concept of the embedding space. Although they delivered very promising performance, the...
متن کامل